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distinction. Thus, the longitudinal chain translation,
favored at higher temperatures, can be frozen into
the lattice as a distribution of static displacements.
A small number of chain-end link defects, moreover,
will guarantee that the lamellar interface will not, on
average, deviate from a planar geometry.
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Abstract

This paper, the third of a series devoted to crystal-
lography in five-dimensional space E*, deals with
the di-incommensurate structures. Physical consider-
ations on the vectors of modulation have enabled the
definition and listing of the di-incommensurate point
symmetry operations, the di-incommensurate point
symmetry groups and the di-incommensurate crystal
families of the space E°.

Introduction

A crystal lattice is said to be di-incommensurate (DI
for short) if the vectors describing the main and

0108-7673/91/050549-05803.00

satellite reflections may be labelled with five Miller
indices as follows:

H = ha*+ kb* + Ic* + m,qF + mq¥ (1)
where h, k, I, m and m, are integers and
qF = aa*+ B b*+y,c*
(2)

qF = a2 + Brb* + y,c*.

One at least of the three entries, a,, 8, and v,, is
irrational, and also for the entries a,, 8, and y,. Then
we can describe a reciprocal lattice in a (3+2)-
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dimensional space as follows:

b, =a* b,=qf +d,
b, =b* b,=q¥+d,. (3)
b3=c*

The vectors d, and d, are unit orthogonal vectors,
orthogonal to the physical space (a*, b*, ¢*). More-
over, the projection of the reciprocal superlattice onto
the reciprocal physical space is the pattern of diffrac-
tion experimentally observed, i.e. the vector H. Con-
sequently, the basis vectors of the direct lattice are

a,=a—(ad, + ayd,)
a,=b—(8,d,+8.d>)
a;=c—(y,d, + v.d,)

a4=d;

a_g:d:.

They define the dual basis of the basis
(bls b2’ bla b4$ bS)'

A di-incommensurate point symmetry operation
(DIPSO for short) is a PSO which leaves the DI phase
invariant; this phase is a crystal in the superspace E*
with (a,, a,, a5, a,, a5) as a cell.

1. Different types of di-incommensurate point
symmetry operations of E®

The different types of DIPSOs can be obtained by
studying all possible distributions of irrational entries
occurring in (2) (Phan, 1989). The result is the nine
kinds listed in Table 1. We have written the irrational
entries only; the others are either rational or zero.

The first kind corresponding to
qF = 2%, qf=aa*

can be explained as follows.
As a, and a, are the only irrational entries, the
vector H can be written

H=ha*+k'b*+!'c*+ m,(a,a*) + m-(a,a™)
where
k'=k+m, B, +m,3,
I'=Il+my, +myy,.

Thus, the basis vectors of the direct lattice are the
following:

a,=a—-ad, —ad, a;=d,
a,=b as=d,.
a,=¢

We notice that vectors a, and a, are the only ones
which do not depend on modulation vectors d, and
d,, so that a DIPSO can be regarded as a commutative
product of two PSOs. The first one acts without
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Table 1. Irrational entries of the vectors qF and qF

In the first column (second column) the irrational entries of the
vector qF (vector gq¥) are given. In the third column, the number
of the different kinds are indicated. All unwritten entries are either
rational or zero.

QY = 2™+ B b*+ y,c* Q¥ = a,a* + Bb* + yc*

@, @, 1

ay B2 (or v,) 2

* @z, B,,(or ;) 3

@, B2 72 4

oy ay, B2, 72 5
ay, B, az, B 6
a,, B, @2, 72 7
ay, By ay, B2, > 8
ay B @, Br.y> 9

restriction on a, and a; and leaves each of vectors a,,
a,, a, invariant. The second one maps either each
element of the set (a,,a,,as) on itself or on its
opposite and leaves a, and a; invariant. With respect
to basis (a,, a;, a,, a,, as), the matrices of these PSOs
are the matrices no. 1 where A is the matrix of a
general PSO of space E” and ¢ equals +1 or —1.

A 10 0 0 1 0,0 0 0
1000 0 110 0 0
00,1 00fx |00 00
0 00 1 0 0 010 & 0
0 0,0 0 1 0 0,0 0 ¢

'0 0 0

A i000
=[0 0] 00
0 010 £ 0
0 0,0 0 ¢

Matrix no. 1 of a DIPSO of the first type. A is the matrix
of a general PSO of space E?and e =+1 or ¢ = —1.

Now, we study the second kind corresponding to
irrational entries «; and B,. Two types of DIPSOs
appear corresponding to entries «, and B, either
different or equal. These two kinds are respectively
named 2 and 2° in Table 2.

Then, kinds nos. 3, 4 and 6 only give two types of
DIPSOs which are particular kinds of the first one.

.Let us consider kind no. 3 for instance, ie a,, a,

and B, are the irrational entries. The basis vectors of
the lattice are the following:

a,=a—a,d —a.d, a,=d,
a,=b - B-d, a;=d,.
a;=c¢

With respect to basis (a;, a,, a,, a,, as), the matrix
of the corresponding DIPSO is matrix no. 2. It is easy
to verify that it is a particular kind of matrix no. 1
where A’ is matrix no. 3.
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Table 2. Different types of DIPSOs

Basis with Matrix of a
respect to the DIPSO
Irrational matrix is compatible
No. parameters Lattice basis written with the lattice
a,=a-a,d, - ay, A : 00 0
q, = a,a* a=b ___Lg_o__o_
1 a,=c (ay,ay,a,,3,,a) 001l ¢ 0 0
qf - a.a* a,=d, 0010 ¢ 0
a;—d, 0O 0,0 0 £
a,=a-ad, e 0 0 0 0
qf = a,a* a,=b-g.d, 0 ¢ 0 0 0
2 a,=c¢ (ay,a,,a,,a,,a) 0 0 & 0 0
q¥ = B,b* a,=d, 0 0 0 e 0
a; =d, 0 0 0 0 &
a, =a-kd, el 00 lo o
qF = ka* a,=b— kd, '0_:_:‘_"]'5_0'
24 a;=¢ (ay,a,,a,,a,,a) 0| 10 0
q} = kb* a,=d, 0! o—o_T‘_A_'
a;=d, 0,0 0,

Table 3. DIPSOs

There are 18 types of DIPSOs, iLe:

LoLom 2 Ly I 3

o

L4 6

A0 =4llT;=41,,

31,30, =330 1.=6 16,/ m_(Weigel er al., 1990).

Type no. 1 Type no. 2 Type no. 2¢
"0 0 0 f'0 0'0o o clo 0olo o
Ao 00 00 00T 0T T
00, 00 0,0 £ ,0 0 o0, T 00
00, 0 ¢ 0 0,0 0z 0 0,00,
0 01 0 0 ¢ 010 010 & 0.0 0.
11 11 1,1,
meym.mg,, m, m

my ., im oy,

[P NS DR | S I P
Loy 200 2w
oy vzl v-2v LIV [V
2, 2,5 2 33454060061,
35540060 3.03.4704005606,,)
3haslel W3adlali6le),
303540406 06,
s
g 0000 Table 4. 47 DIPSGs of E-
0 0 0
0 5 8 0 Type no. 1 Type no. 2 Type no. 2
£ 2, mm;m1l 1..1,1; 33%, m13i3*
0 000 2,0, 10,102, m m 2/ m; 33%. 2 m133*,2
0 000 ¢ 3;3;3,m 212, m12.2 44*; m 144*
Aigdm 44% 2 m144% 2
Matrix no. 2 of a DIPSO of the third type. £, = +1 ore, = -1 444 mn 66, m166*
and e=+1ore=-1 SRR PN PR A 2,66%,2, m12,66% 2
. 411,114, mm
6:6,6,m, m _
a=(f 0 (3, m)LT: 6,14, 1,
0 ¢ L1116, m,

—1
-
3

Matrix no. 3. £, (and ¢) equal to +1 or —1. Lo Tom
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Table 5. Di-incommensurate crystal families of E’

The first column gives the name of crystal families of E* and their no. in the classification of Plesken (1981). The second column gives
the WPV symbol of the holohedry of each family and the third one the WPV symbols of PSGs, subgroups of this holohedry. The last
column gives the number of DIPSGs of each family. Thus, we obtain another classification of the 47 DIPSGs, family by family.

WPV symbol WPV symbol of Number of
Number and name of the family of the holohedry the other DIPSGs DIPSGs

I Decaclinic i 1 2

11 Right hyperprism mil, m; 1, 3
based on hexaclinic

11 Orthogonal triclinic (XYZ) 2,1 3
parallelogram (TU) 112

v Orthogonal triclinic (XYZ) 2,mm;2,1,,1,;1Lm 4
rectangle (TU) 1L2,mm

v Right hyperprism based 202,2/m;1,, 1,1 4
on di-orthogonal parallelograms mi1212 -

A Orthogonal triclinic (XYZ) 114, m m T14;4,m m;4,3,4,1,,14; 7
square (TU) _ 4, mls .

VIl Orthogonal triclinic (XYZ) 116, m m 6, 14,14;1L6;6, m m;6,6
hexagon (TU) 3, 14;113, m;113;3, m;3;3 12

XI1 Right hyperprism based m144* 44* 2
on di-diclinic squares (YZ)(TU)

X111 Right hyperprism based m166* 66*;33*%, m133* 4
on di-diclinic hexagons (YZ)(TU)

XVI Right hyperprism based m144*, 2 44* 2 2
on di-monoclinic squares ( YZ)(TU)

XVII Right hyperprism based on mL166*,2 33*%,2;66%2; m133* 2 4

di-monoclinic hexagons ( YZ)(TU)

Finally, kinds nos. 5, 7, 8 and 9 only give two types
of DIPSOs: the PSO identity and its opposite. As an
example, we can easily verify this property on kind

no. 7. The basis vectors are the following:
a,=a—ad,—a.xd, a,=d,
a,=b-8d, a;=d,
a;=c -y,

and consequently all vectors must be unchanged or
must be mapped on their opposite through a DIPSO.

As a conclusion, only three types of DIPSOs
appear. They are listed in Table 2. Then, all the
crystallographic DIPSOs of E°, corresponding to
each of the previous three types, are explicitly
described in Table 3. We can see that among the 38
types of crystallographic PSOs of E° (Weigel, Phan
& Veysseyre 1990) only 18 types are DIPSOs.

I1. Di-incommensurate point symmetry groups of E®

(1) A point symmetry group (PSG) of E° is said
to be a DIPSG if it is composed of PSOs belonging
to one and only one type of DIPSO listed in Table 3.

Let us consider two PSGs of E”:

(i) the first example has the WPV symbol mL1,.
This is the holohedry of the crystal family named
right hyperprism based on hexaclinic (YZTU)
(Veysseyre, Phan & Weigel 1991).

The PSOs of this group of order 4 are

1; 1 1s.

As these PSOs belong to type no. 2% the PSG m.L1,
is a DIPSG.

m

Xy vztus

(ii) The second example is the PSG 2,1,1, of
order 4, belonging to the crystal family ’

orthogonal parallelogram (XY) orthorhombic
(ZTU) (Veysseyre et al., 1991). Its elements are
1, 22!, T)(yzy T)(_Vl‘

They do not belong to_the same type of DIPSOs.
Therefore, the PSG 2,1,1, is not a DIPSG.

(2) The 47 DIPSGs of E°.
Now, we establish the list of all PSGs of E° generated
by the DIPSOs of the same type. For instance, the
DIPSOs of type no. 2 generate the following twelve
PSGs and only these:
1

1,,1,1;, mil,

1; s,
2, 2/m; 1L12; 212

The exhaustive list of the DIPSGs of E® is given
in Table 4. These PSGs are classified type by type
and we find:

23 DIPSGs of type no. 1 and only of this type

4 DIPSGs of type no. 2 and only of this type

12 DIPSGs of type no. 2 and only of this type

2PSGs belong to both types no. 1 and no. 2

6PSGs belong to three types nos. 1, 2 and 2°.
The total is 47 DIPSGs.

ml212.

III. Di-incommensurate crystal families of E*

(1) As previously, a crystal family of E* is said to
be di-incommensurate if it is only composed of
DIPSGs. For instance, family no. V:
right hyperprism based on
parallelograms (YZ)(TU)

di-orthogonal
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has the holohedry m1212. (Veysseyre et al., 1991).
The subgroups of this holohedry are the following:
212, 2/m; 1,,1,1; 112;

1, 20 1,; m; 1; 1.

All these PSGs are DIPSGs of E°. Therefore this
family is a DI crystal family.

mJ_T‘;;

(2) The eleven DI crystal families of E°.
In space E’, eleven crystal families are DI families.
In Table 5, we give their names, together with the
WPV symbols of their holohedries and of their PSGs.

Concluding remarks

The study of the different possibilities for the entries
of the modulation vectors to be either rational or not
enables us to define the DIPSOs, then the DIPSGs
and the DI crystal families.

de Wolff, Janssen & Janner (1981) published a list
of Bravais classes of the crystal families of E°
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necessary for the study of incommensurate phases of
internal dimensions equal to 1, 2 or 3 and they pro-
posed a notation for these Bravais classes.

In a previous paper, we established a connection
between the two approaches and the two notations
for the mono-incommensurate structures (Grebille,
Weigel, Veysseyre & Phan 1990).

In a forthcoming paper, the same work will be
developed for the di-incommensurate structures and
some physical examples studied.
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Abstract

The phase problem of membrane diffraction is usually
solved by the swelling method; however, this method
does not always resolve the phases unambiguously.
An alternative method of phase determination using
anomalous dispersion is illustrated by the multiple-
wavelength diffraction of membranes containing
gramicidin ion channels. The anomalously scattering
atoms are thallium ions bound to the channel. The
result determines the location of the ion-binding sites
in the gramicidin channel and the electron-density
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Science & Technology of China, Hefei, Anhui, People’s Republic
of China.
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0108-7673/91/050553-07$03.00

profile of the membrane. The applicability and limi-
tation of the anomalous-dispersion method are
discussed.

Introduction

Membrane scattering has been used to determine the
structures of membranes and to reveal structural
properties of molecules embedded in membranes,
such as cholesterol (e.g. Franks & Lieb, 1979),
rhodopsin (e.g. Yeager, 1975) and ion channels (e.g.
Olah, Huang, Liu & Wu, 1991). When membranes
are in the smectic liquid-crystailine form, the reso-
lution of membrane diffraction is usually limited to
a few dngstroms. Nevertheless, if heavy atoms in the
system are bound to a few well defined sites, it is
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